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Virtual Geographic Environments (VGEs) are proposed as a new generation of geographic analysis tool to contrib-
ute to human understanding of the geographic world and assist in solving geographic problems at a deeper level.
The development of VGEs is focused on meeting the three scientific requirements of Geographic Information Sci-
ence (GIScience) — multi-dimensional visualization, dynamic phenomenon simulation, and public participation.
To provide a clearer image that improves user understanding of VGEs and to contribute to future scientific devel-
opment, this article reviews several aspects of VGEs. First, the evolutionary process from maps to previous
GISystems and then to VGEs is illustrated, with a particular focus on the reasons VGEs were created. Then, extend-
ed from the conceptual framework and the components of a complete VGE, three use cases are identified that
together encompass the current state of VGEs at different application levels: 1) a tool for geo-object-based
multi-dimensional spatial analysis and multi-channel interaction, 2) a platform for geo-process-based simulation
of dynamic geographic phenomena, and 3) a workspace for multi-participant-based collaborative geographic
experiments. Based on the above analysis, the differences between VGEs and other similar platforms are discussed
to draw their clear boundaries. Finally, a short summary of the limitations of current VGEs is given, and future
directions are proposed to facilitate ongoing progress toward forming a comprehensive version of VGEs.

© 2013 The Authors. Published by Elsevier B.V. Open access under CC BY-NC-SA license. 
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1. Introduction

The scientific issues regarding Geographic Information Science
(GIScience) have arisen in five future scenarios (Goodchild, 2009a,
2010), among which multi-dimensional visualization, dynamic phe-
nomenon simulation, and public participation are the three key points.
cense. 
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To address these issues, the corresponding tools that are used to assist in
the study of geography should be improved in a continuous and
efficient manner to meet the scientific requirements and further the
evolution of GIScience.

As a new form of geographic analysis tool and also an extension of
Michael Batty's virtual geography theory (Batty, 1997), VGEs are a
type of typical web- and computer-based geographic environment
built for geographic understanding and problem solving (Lin and
Gong, 2001, 2002). By merging geographic knowledge, computer tech-
nology, virtual reality technology, network technology, and geographic
information technology, VGEs are built with the objective of providing
open, digital windows into geographic environments in the physical
world, to allow users to ‘feel it in person’ by a means for augmenting
the senses and to ‘know it beyond reality’ through geographic phenom-
ena simulation and collaborative geographic experiments (Lin and Zhu,
2006; Batty, 2008; Lin and Batty, 2009; Konecny, 2011; Lu, 2011;
Priestnall et al., 2012; Lin et al., 2012). Consequently, a complete VGE
(see Fig. 1) should be designed with four components: the data compo-
nent, the modeling and simulation component, the interactive compo-
nent, and the collaborative component, which are responsible for
geographic data organization, the implementation of geographic model-
ing and simulations, interactive channel construction, and collaborative
tool design, respectively (Lu, 2011; Lin et al., 2013). Including the
above components enables the construction of two cores, namely a
geo-database and a geographic processmodel base. Furthermore, virtual
geographic scenarios can be constructed to enable both public and
scientific researchers to explore geographic phenomena and to address
geographic issues (Lin et al., 2009, 2010a).

For example, in a VGE built for air pollution analysis (Fig. 2), by the
researchers, not only can static virtual geographic scenarios, including
the background environments and objects (both discrete objects such
as chimneys and continuous objects such as pollutants), be represented
and analyzed, but future pollution trends can also be predicted because
the geographic process models (e.g., the Weather Research and
Fig. 1. Structure of a
Forecasting Model and the Community Multi-scale Air Quality Model)
can be integrated for the simulation of dynamic diffusion processes.
The public can thus (1) experience the visualized ‘real world’, revisit
the past, and explore the future as avatars through interactive channels;
(2) understand the relations between air quality and related factors
(e.g., climatic change and the distribution of pollution sources) more
deeply; and (3) contribute their feedback and virtual spatial activities
(e.g., reducing their driving) in the digital environment, which may
transform virtual situations for further experiments and prediction.
Moreover, general understanding can be acquired more easily by view-
ing and experiencing such a digital geographic world than by viewing
various figures and tables. Thus, collaborative exploration can be
conducted more conveniently than by using previous systems. For
example, experts from meteorology, chemistry, and geography can
perform virtual experiments through the network, collaborating with
decision-makers in different offices across the globe.

From the above-described perspectives, the scientific issues
concerning the building of VGEs naturally coincide with Goodchild's
three key points. There is a need, therefore, to produce a detailed review
and to add clarity to VGEs. The present work not only traces the evolu-
tionary course of geographic analysis tools in past years, but it will also
promote the development of GIScience in the coming decades of the
twenty-first century. Examining ten years of continuous exploration,
this article provides a clearer description of VGEs, including the reason
for their creation, their detailed functions and distinct features, and the
current limitations and future directions surrounding these technologies.
The remainder of this article is organized as follows: the evolutionary
process, from maps to previous GISystems then to VGEs, is illustrated
in Section 2. To provide an effective basis for understanding complex sys-
tems, Section 3 identifies three use cases that together encompass the
current state of VGEs at different application levels. Progress to date is
also reviewed for each use case. Section 4 discusses the differences be-
tween VGEs and other similar platforms. The article concludes with a
summary and presentation of future directions for VGEs.
complete VGE.



Fig. 2. A VGE example built for air pollution analysis.
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2. Evolution frommaps to previous GISystems then to VGEs

Human understanding of the geographic world is a gradual process,
during which different requirements are presented from the elementa-
ry to the profound. There are three primary stages of geographic under-
standing. The first stage is to acquire geographic information; the
second stage is to study geo-objects (e.g., their shapes anddistributions)
and their relationships using topological, geometric, or geographic
Fig. 3. The development of tools according to the evolutio
property information; and to further explore advanced geographic
laws, the third stage is to analyze dynamic geographic pheno-
mena and processes (Mark et al., 1999). To meet the different require-
ments needed for this understanding, corresponding tools have
evolved accordingly. Fig. 3 illustrates this process and the corresponding
tools.

Here, we focus on the evolution from maps to previous GISystems
and then to VGEs.
n of human understanding of the geographic world.

image of Fig.�2
image of Fig.�3
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Amap is a graphic representation or scale model of spatial concepts
that records and communicates spatial information concerning the
physical and social aspects of the environment (Campbell, 2001; Aber,
2007). Maps were first used as schematic tools to identify locations
and directions. With the development of cartographic techniques,
such as the establishment of the meridian, the division of latitude and
longitude, and the design of various projection methods and abstract
symbols, maps were able to communicate geographic features and spa-
tial distributions to humans (Crone, 1968; Bagrow and Skelton, 2009).
In recent years, as computer technology has greatly popularized maps
in the form of electronic maps and network maps, maps have become
the most effective way to answer the question “where is it?” and the
basic tool for understanding locations and geographic features of an
area in daily life (Geoffrey and Preston, 1993; Wood and Fels, 2008).

As an extension ofmaps, GISystems are rooted in computermapping
and spatial database management, with spatial analysis as their key
component (Goodchild, 1987; Longley, 2000a; Longley et al., 2011).
The analytical approaches of GISystems have evolved as much as their
mapping capabilities and practical expressions, and their analytical
capabilities have taken users well beyond mapping (Berry, 1997,
2009; Longley, 2000b). Numerous examples illustrate the successes of
GISystems in both natural and social fields (e.g., Khan et al., 2006;
Konecny et al., 2010; Richardson et al., 2013). However, considering
the recently proposed scientific issues concerning GIScience, e.g., that
GIScience should evolve from being data driven to concept and theory
driven, from static to dynamic, and frompattern presentation to process
modeling/simulation (Goodchild, 2009a), previous GISystems still lack
the realm of evidence, knowledge and ultimately wisdom to fully assess
the earth system (Longley et al., 2011). Previous GISystems must
improve in several areas. First, dynamic phenomena occur at all times
and places in the geographic world (e.g., rainfall, accordant junctions,
and evaporation); therefore, it is necessary tomodel the geographic en-
vironment as a dynamic system (Batty, 1971; Flower et al., 1998, 2004).
However, previous GISystems have been criticized because they did not
adequately accommodate knowledge regarding the dynamic aspects of
the earth's surface, and insufficiently accounted for the geographic
phenomena that are continuously dispersing or propagating in space
and time (Goodchild, 2008a; Bothwell and Yuan, 2010). Second, several
researchers have noted that GISystems should involve the public by
placing them and their spatial knowledge on equal footingwith experts
and decision-makers (e.g., Carver, 2001a; McCall, 2003; Duncan, 2006).
However, previous GISystems lacked the high level of interactivity re-
quired to efficiently support collaborative and participative processes
(Jankowski and Nyerges, 2001), and their user interfaces were often
too complex for non-experts (Carver, 2001b). Although several systems
that encourage public participation have been proposed, such as the
Participatory GISystem (PGIS) and the Public Participation GISystem
(PPGIS) (Abbot et al., 1998; Carver et al., 2001), sufficiently interactive
and attractive interfaces for convenient participation are still urgently
needed from the informational perspective to support information
collection, collaborative experimentation, and decision-making, partic-
ularly when non-expert participants are involved (Jankowski and
Nyerges, 2001; Balram and Dragicevic, 2006; Elwood, 2006; McHugh
et al., 2009).

Recently, virtual environments have shown immense potential for
scientific research (Bainbridge, 2007). In the geographic research field,
VGEswere proposed as an evolutionary step beyondmaps and previous
GISystems for geographic analysis. The term ‘geographic environment’
has long been accepted as a description of the surfaces on which
human societies exist and develop (Churchill and Friedrich, 1968). The
geographic environment surrounds each person in his or her life,
including in images and in memory. Building digital windows into geo-
graphic environments, i.e., VGEs, for geographic understanding and
problem solving is expected to overcome the defects of previous
GISystems on some levels. On one hand, as defined, a VGE is generally
built with two cores — a geo-database and a geographic process
model base. Here, it is worth mentioning that, as opposed to spatial
analysis (e.g., network analysis) and spatial statistical analysis algo-
rithms that are employed by previous GISystems, geographic process
models refer to models that are used for dynamic geographic process
computing (e.g., the Gaussian Plume Model for the calculation of air
pollutant dispersion, the Weather Research and Forecasting Model for
climate computing, and theMIKE SHEModel forwaterflow simulation).
Combining such geographic process models with GISystem-based anal-
yses can improve the understanding of gradual geographic evolution
and allow for new quantitative and systematic examinations of spatial
and temporal patterns of dynamic geographic processes (Napieralski
et al., 2007). On the other hand, as knowledge sharing is becoming
more and more important both for scientific research and daily life, a
visualized virtual environment canprovide another practical opportuni-
ty for idea exchange, as opposed to using only abstract representations,
and this visualized environment can create a better experience for users,
particularly for the public (Bainbridge, 2007). By merging the virtual
environment with geographic concepts, e.g., geographic coordinates,
geographic scales, and regional features, VGEs can help the user better
understand geographic information through multi-sensory interaction
and, hence, improve understanding of real-word patterns and processes.
In this case, VGEs can lay a solid foundation for convenientmanipulation
and communication, which will further contribute to the attraction of
more users and the collection of more geographic knowledge.

3. Use cases of VGEs

The formal process of systemdesign beginswith the identification of
use cases, and the understanding process also starts with the cognition
of these use cases (Goodchild, 2008b, 2012a). To improve the recogni-
tion of VGEs, this section takes a similar perspective, focusing on
illustrating use cases of VGEs at different application levels. Based on
the combination of different components of a complete VGE, these use
cases of VGEs can be divided into three levels (see Fig. 4).

3.1. A tool for geo-object-based multi-dimensional spatial analysis and
multi-channel geo- interaction

Spatial analysis and visualization are the basic functions of
geographic information tools (Longley et al., 2011). However, with the
increasing requirements of spatial cognition, traditional spatial analysis
and visualization in 2D cannot meet the advanced needs of geographic
researchers or the public, particularly when solving problems related
to complex spaces. The tendency is, in recent years, with the develop-
ment of 3D datamodels (e.g., facial models, volumetric models, discrete
models, and continuousmodels) and visualization-related technologies
(e.g., levels of detail, graphics processing unit-based rendering, and
distributed scheduling), 3D spatial analysis functions are increasingly
integrated into modern geographic analysis tools and 3D visualization
systems (e.g., Google Earth,WorldWind, Skyline) have become popular
(Brooks and Whalley, 2008; Pouliot et al., 2008; Aliaga et al., 2009;
Borrmann and Rank, 2009; Wycisk et al., 2009). From the perspective
of spatial analysis, systemswith 3D spatial analysis functions can enable
more powerful analyses, such as sunlight analysis (e.g., Al-Shalabi et al.,
2006; Bansal and Pal, 2009; Yasumoto et al., 2012), the network analysis
of underground objects (e.g., Pubellier, 2003; Rienzo et al., 2009;
Balogun et al., 2011), and 3D path-finding analysis and navigation
(e.g., Kwan, 2005; Sobata et al., 2008; Becker et al., 2009), compared
with systems with 2D spatial analysis functions. In terms of visualiza-
tion, geographic information expressed in 2D is generally abstract and
limited, which is difficult for non-experts to understand. Multi-
dimensional visualization enables the presentation of geographic sce-
narios and phenomena to be more dynamic. This capability can also
contribute to geographic experiments involving the public because eas-
ily understood scenarios can enhance their response capacity and allow



Fig. 4. Different levels of use cases based on the combination of the components of VGEs.
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them to make full use of their experience from the real world once they
are willing to provide their spatial knowledge (Mania et al., 2010).

These developments have enabled VGEs to be a potentially suitable
tool for advanced geographic analysis and visualization (MacEachen
et al., 1999; MacEachen and Kraak, 2001; Chen et al., 2008a). On one
hand, examples have shown that virtual environments have greatly
benefitted scientific analysis and visualization (Bainbridge, 2007). On
the other hand, the data component in a VGE, which is responsible for
multi-dimensional geographic data organization and management,
and the interactive component, which is responsible for providing inter-
active channels between users and the VGEs, are essentially designed to
meet the geographic requirements described above (Lu, 2011; Lin et al.,
2013).

Generally, the physical world consists of discrete objects with clear
boundaries (e.g., a rock or a building) and continuous fields without
clear boundaries (e.g., soil and grass). Interest in the changes of these
geo-objects over time has intensified. To build virtual scenarios similar
to those of the real world and to support complex, multi-dimensional
(including time) spatial analysis, the design of the data model, rather
than visualization alone, is the key issue when building a VGE. Several
theories, e.g., space subdivision, fluid dynamics, and (non-) manifold
theory, have been previously applied to create data models for spatial
analysis in complex 3D environments (e.g., Lin, 1997; Kneller and
Buckee, 2002; Coors, 2003; Arens et al., 2004; Hustoft et al., 2007;
Boguslawski and Gold, 2009; Paris et al., 2009). However, to support
multi-dimensional geographic process simulations, there is a growing
need to integrate time dimensional information with geometrical infor-
mation when designing a data model for organizing geo-objects, and
the representation and computing efficiency of data models remain a
significant challenge. Recently, studies have focused on introducing
geometric algebra theory into spatial data modeling in VGEs (Li, 2008;
Yuan et al., 2010a,b; Yuan et al., 2012a,b,c). Geometric algebra theory
has been widely used in computer vision, artificial intelligence and
other related fields for more than a decade (e.g., Hestenes, 2002,
2003; Doran and Lasenby, 2003; Dorst et al., 2007; Perwass, 2009).
The difference is this type of theory uses dimensional calculations as
the bases for geometric operations; thus,multi-dimensional space is de-
fined as the operations of a series of vector sets. In terms of this theory,
two vectors, e.g., a and b can be expressed as ab =a · b + a ∧ b, in
which a · b can be regarded as the inner product, and a ∧ b can be
seen as the outer (or exterior) product. Both the inner and outer prod-
ucts are dimension-related. The former can decrease the number of di-
mensions when calculating, and the latter can increase the number of
dimensions and help to construct the shape of geo-objects. In this
way, scalar and vector, dimensional and geometric operations are uni-
fied into one single equation to reduce the difficulty of constructing
complex, high-dimensional geometric shapes, laying a solid foundation
for themulti-dimensional expression and analysis of geo-objects (Yuan
et al., 2012a). Fig. 5 shows the examples of a multi-dimensional spatial
analysis of the sea, land, and ice layers in the South Pole in a VGE, using a
data model built with geometric algebra theory (Yuan et al., 2012b).

Although some progress has beenmade, to date, there is still no uni-
fied data model that can fully satisfy the construction of VGEs for differ-
ent applications. This lack of a unifiedmodel is the same problem noted
for data models designed for previous GISystems. Some researchers
have explored data representationmodels for data exchange among dif-
ferent VGEs and other systems (e.g., Su et al., 2008; Chen et al., 2009a),
but semantic heterogeneity is another big problem that needs to be
solved in the future (Lin et al., 2013).

In terms of geo-interaction, as noted above, VGEs have great poten-
tial to support multi-dimensional visualization (MacEachen and Kraak,
2001), but they are not restricted to visualization. It fact, other senses,
in addition to vision (e.g., hearing, touch, smell, and taste), can also
greatly enhance the perception of the world. Early in 2005, Goodchild
argued that to aid participants in analyzing geographic phenomena
and communicating geographic knowledge in a more realistic way,
new tools for geographic analysis should be developedwith virtual real-
ity technologies and should be equipped with a means for augmenting
the senses (Goodchild, 2005). Compared with systems using 2D envi-
ronments, a VGE can provide stereo expression of geo-objects and
scenarios based on geographical similarity theory, which lays an essen-
tial foundation formanipulating geo-objects and experiencing geograph-
ic phenomena as though these phenomena were being experienced in
person (Cartwright et al., 2005; Lin et al., 2013). In addition to a mouse
or keyboard, language, gestures, or drawing can also be introduced as
interactive channels in VGEs to enable more comfortable manipulation.
Recently, increasing multi-channel interaction-related theoretical
research (e.g., Loomis et al., 1998; Jansson and Pedersen, 2005;

image of Fig.�4


Fig. 5.Multi-dimensional spatial analysis in a VGE with a data model built using geometric algebra theory.
Modified from Yuan et al. (2012b).
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Bowman, 2007; Dede, 2009) has been discussed and applied in the
construction of VGEs, and thus, multi-channel interfaces have in-
creasingly appeared in VGEs, both for researchers' analyses as well
as for public participation (e.g., Johnson et al., 2006; Limniou
et al., 2008; Slater, 2009; Paolis et al., 2011).

3.2. A platform for geo-process-based simulation of dynamic geographic
phenomena

According to Goodchild, in the near future, the research paradigm of
GIScience will change from static snapshots to dynamic phenomena
(Goodchild, 2004, 2009a, 2010). In fact, geo-processes, which change
continuously across both spatial and temporal dimensions, have already
demonstrated their ability in driving geographic spatial patterns and
distributions (Hofer, 2009; Hofer and Frank, 2009). To assist in the
understanding of comprehensive and gradually evolving geographic
problems, conducting dynamic geographic phenomena simulation
with geographic processmodels is currently oneof themost popular ap-
proaches, with which not only past and current scenarios can be
reproduced and analyzed, but future situations can also be predicted
as well (He, 2002; Maguire et al., 2005).

To date, many geographic process models related to various geo-
processes have been created and applied in disciplines ranging from
geo-physical studies (e.g., Wilson and Hamilton, 1996; Gordon et al.,
2000; Verburg et al., 2002; Miall and Miall, 2004; Takle et al., 2006;
Rinaldi and Darby, 2007; Chin et al., 2010) to human spatial behavior
exploration (e.g., Golledge and Stimson, 1997; Moulin et al., 2002; An
et al., 2005). To fully utilize these model resources and to explore the
mechanisms behind geo-processes more conveniently, researchers
from the geographic and computer fields have been working to couple
these models into geographic analysis tools (e.g., Kemp, 1996; Olivera
et al., 2006; Ruelland et al., 2007), resulting in the development of sev-
eral projects for model building and sharing, including the Modular
Modeling System (MMS) (Leavesley et al., 1996), the Spatial Modeling
Environment (SME) (Maxwell and Costanza, 1997), the Interactive
ComponentModeling System (ICMS) (Reed et al., 1999), the Communi-
ty Surface Dynamic Modeling System (CSDMS) (CSDMS Working
Group, 2004), the Earth System Modeling Framework (ESMF) (Hill
et al., 2004), the Open Modeling Interface (OpenMI) (Blind and
Gregersen, 2005; Moore and Tindall, 2005), the European Union's Pro-
gram for Integrated Earth System Modeling (PRISM) (Valcke et al.,
2006), the SEAMLESS-IF (Van Ittersum et al., 2008), and CAPRI (Britz
et al., 2010). Although these projects are valuable references, most of
them are highly field-related and difficult for experts from other fields
to use, which limits the breadth of application of these tools and in-
creases the entry barriers to these systems (Feng et al., 2011; Nativi
et al., 2012). Moreover, to date, technologies related to model sharing
and integration over the Internet have not been widely incorporated
into these projects (Wen et al., 2012).

Research into VGEs tries to provide multidisciplinary experts with a
platform with which to create, re-use, and implement distributed geo-
graphic processmodels that allow formore convenient geographic pro-
cess modeling and simulation (Lu, 2011; Lin et al., 2013). Several key
issues have been given substantial attention in the modeling and simu-
lation component of building a VGE. Supporting conceptual modeling is
the first of these issues. A conceptual model is the representation of a
geographic phenomenon at a certain level of approximation external-
ized in a semiformal or formal language (Wand and Weber, 2002).
Conceptual modeling is the first step of geographic modeling and simu-
lation, and a high-quality conceptualmodeling process can facilitate the
early detection and correction of modeling errors (Krogstie and
Sùlvberg, 2003). Related solutions have been proposed, for example,
in some projects, the concept of geo-objects and their relationships
were represented by geographic conceptual icons and directed lines re-
spectively, and the geographic conceptual models were then built by
dragging those elements into a geographic conceptual scenario in a
guided way (Chen et al., 2008b, 2011a). However, the practical applica-
bility of these conceptual modeling methods still needs to be further
verified because model semantics are generally heterogeneous; there-
fore, organizing and attaching model semantics in a normalized way

image of Fig.�5
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with conceptual geographic scenarios requires further study. Another
key issue in the modeling and simulation component of VGEs is the
sharing and integration of computational models through the Internet.
In reference to this issue, the design ofmodel specifications, model cou-
pling mechanisms, and model distributed execution strategies should
be seriously examined in the construction of the modeling and simula-
tion component of VGEs. Related research has been reported in several
studies (e.g., Ogle and Barber, 2008; Chen et al., 2009b; Fook et al., 2009;
Geller, 2010;Wen et al., 2012), and the abilities of VGEs are expected to
be enhanced to satisfy further requirements of the updated network en-
vironment, such as cloud computing.

From the perspective of end users of dynamic geographic phenome-
na simulations, using VGEs as a platform has several advantages.

First, VGEs provide sensible environments for users to gain an intu-
itive feeling of dynamic phenomena, making simulation process easy
to handle and allowing for the results to be more easily understood
(Mekni, 2010; Xu et al., 2010, 2013; Chen et al., 2011b).

Second, the evolution of geographic processes is often influenced by
interactions among several small processes related to different fields.
For example, the development of urban areas might be affected by
river resources, air pollution, land use, and population (Chin, 2006),
and climate change might be caused by both environmental factors
(e.g., atmospheric circulation) and human social activities (e.g., over-
exploitation of natural resources and energy) (Miall and Miall, 2009). A
VGE would provide a platform for researchers to gain a systematic un-
derstanding as if they were in the real world based on their common
sense. They could then conduct a comprehensive analysis of the earth
system by integrating multidisciplinary models in a visual and formal-
ized mode (Haddad and Moulin, 2008; Chen et al., 2011a).

Third, combining VGEs with real-time sensor data can greatly en-
hance the accuracy of geo-simulation in a reality–virtuality fusional
mode. For example, on one hand, VGEs could provide virtual scenarios
that correspond to the physical world, so that the real-time data stream
(e.g., data acquired from sensor networks), which facilitate the study of
fundamental processes and the development of earth systems (Hart and
Martinez, 2006), could be easily imported as the input parameters for
the simulation according to their actual positions. On the other hand,
data produced during simulation processes could also be used to reform
continuous visual scenarios. After making comparisons with the real
monitored data, it would be useful for researchers to adjust the control
parameters in a timely manner and thus improve the accuracy of the
simulation (Che et al., 2011; Xue et al., 2012).

Lastly, although coupling problems currently exist, when simulation-
related geographic data and multi-scale process models can be integrat-
ed seamlessly by the data component and the modeling and simulation
component, the use of a VGE would support the simulation of multi-
scale geographic phenomena because the virtual scenarios could be cre-
ated at different scales and transformed by ‘zoom in’, ‘zoom out’ or other
geographic operations, and the geographic process models at corre-
sponding scales could thus be called for analysis. For example, beginning
with a global view, macro-scale phenomena such as ocean circulation,
diastrophism, and monsoon evolution can be simulated and expressed.
When zoomed in, run-off variation, water and soil loss, and soil erosion
can be studied at the meso-scale. At the micro-scale, human behavior
within a city or small region can be explored.

3.3. A workspace for multi-participant-based collaborative geographic
experiments

Geography is a comprehensive subject involving both natural and
human factors and their interactions; therefore, related research topics
cover various disciplines (e.g., geomorphology, hydrology, soil science,
biology, climate science, and social science), and the focus is on explor-
ing the interactive mechanisms of surface processes (Murphey, 1982;
Armstrong, 2000). In reality, the surface processes of geographic sys-
tems cannot be treated separately (Neumann et al., 2010). To conduct
comprehensive research on complex geographic problems, modern ge-
ography is developing in a positive direction that promotes integrated
study from an integrated perspective (Wright and Gale, 2003). In this
regard, collaborative work is a significant requirement for geographic
research and applications.

Geographic collaboration has been defined by MacEachren et al. as
having two facets: (1) ‘as an activity’ which is ‘group work about
geographic problems facilitated by geospatial information technologies’;
and (2) ‘as afield of research’which is ‘the study of these group activities,
together with the development of methods and tools to facilitate them’

(MacEachren et al., 2003). These two aspects of geographic collaboration
require a facilitative workspace to engage both the experts and the
public to collaboratively contribute their own knowledge. In this case,
providing a VGE for multi-participant based geographic collaboration,
e.g., collaborative geographic experiments, would have two major
advantages, both for professional and non-professional participants.

First, a reasonable solution for scientific research on complex
geographic problems is to engage dispersed multi-disciplinary experts
to discuss problems, performexperiments, andfindoptimal answers to-
gether through collaborative modes, such as by joining a virtual group
through the Internet (Hara et al., 2003). To enable these experts to
share knowledge, present opinions, review work, post suggestions,
and give comments to each other, the hot spot research regions, physi-
cal phenomena, and other related elements should be shared before the
discussion. However, different experts have different understandings of
these elements of discussion. Discussing problems under different
abstraction modes will increase the difficulty of this collaboration. In
this respect, according to Churchill et al. (2001) and Abel et al. (2005),
a better method for knowledge sharing is to provide visual objects and
common phenomena that are easily recognized and illustrated in a fa-
miliarway. Combining this idea of providing visual objects and common
phenomena with multi-dimensional geographic data and geographic
process models, a VGE could provide virtual environments correspond-
ing to the real geographic world. These virtual environments would be
familiar to most researchers as environments seen in their daily lives
and would be convenient to describe. Compared with systems that
use abstract or professional symbols to represent geographic informa-
tion, these shared visual and familiar geographic scenarios would create
a better universal and imaginable understanding of process and thus,
would enable groups of geographically disparate users towork together
by using common information spaces. Examples of this type of collabo-
ration have appeared in several fields, such as silt dam planning, pollu-
tion analysis, and moon exploration (e.g., Gong and Lin, 2006; Zhang
et al., 2007; Zhu et al., 2007; Lin et al., 2010b; Xu et al., 2011; Chen
et al., 2012).

Second, social factors are very important for comprehensive
geographic research, especially for geographic experiments which
ought to combine the natural and social worlds under one explanatory
umbrella (Matthews and Herbert, 2008). To include social factors in
geographic experiments, the most commonly used method is to collect
social data using methods such as surveys or statistics and then
integrate those data into the analysis tools (e.g., McLafferty, 2002,
2006). Recently, game-oriented virtual environments, such as second
life, have been used to collect spatial behavior (e.g., Friedman et al.,
2007; Pelachaud et al., 2007). However, the exploration of physical geo-
graphic phenomena and related serious collaborative experiments is
difficult to carry out because real geographic scenario and laws are
often lacking in these virtual environments (Chen et al., 2013). In this
respect, a VGE would be a more appropriate tool than a game-
oriented virtual environment from the geographers' perspective (Hu
et al., 2011). Cognitive psychologists have suggested that peoplewill be-
have more similarly if they are in similar surroundings (Tversky, 2005;
Taylor et al., 2008). Thus, by providing familiar virtual geographic sce-
narios and user-friendly interactive tools, a VGE that is built based on
real geographic features would enable the public to act more naturally
and give more reasonable judgments so that social factors could be
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incorporated in a more appropriate way (Goodchild, 2009b; Mania
et al., 2010). For example, the public can interact with the contents of
the virtual world and communicate with one another as they are in
the real world. They can also behave creatively in a Virtual Geographic
Environment (e.g., plant trees or reduce automobile emissions), which
may stimulate them to be more willing to share their own knowledge.
Moreover, in collaboration with researchers' analyses and simulations,
these behaviors and the knowledge collected from VGEs will further
contribute to geographic experiments and decision-making (Lin and
Zhu, 2006; Lai et al., 2010).

4. Differences between VGEs and other similar platforms

The three levels of use cases described in the previous section sug-
gest several conclusions regarding the differences between VGEs and
other platforms.

First, VGEs are different from current digital cities (e.g., Ishida, 2002),
virtual communities (e.g., Rheingold, 2000), virtual reality environ-
ments (e.g., Rheingold, 1991; Steuer, 1992; Burdea and Coiffet, 2003),
augmented reality environments (e.g., Azuma, 1997; Regenbrecht and
Wagner, 2002), virtual worlds (e.g., Bartle, 2003) and other such virtual
environments. A VGE is built for geographic analysis, and its primary
objective is to solve comprehensive geographic problems. However,
thepurposes of the other systems listed above are different. For example,
a virtual community is a social network of individuals who interact
through specific social media, and it is designed for social interaction be-
tween community members who vary from personal to purely formal
(Rheingold, 2000). As another example,most current virtual reality envi-
ronments are primarily designed for visual experiences. Although VGEs
are built based on virtual reality technologies, they are different from
virtual reality environments because VGEs are equipped with real geo-
graphic features, mechanisms, and laws, which are intended to be used
for geographic problem solving. In particular, VGEs are used not only
for the reproduction of past or current geographic scenarios but also
for the prediction of future geographic phenomena. However, some
current virtual environments tend to ignore this type of prediction.

Second, VGEs are similar to the next generation of Digital Earth,
which is expected to be built with sophisticated processing and analysis
models that can turn information into insight and intelligent action
(Craglia et al., 2008). However, there are still a few differences. First,
Goodchild has noted that Digital Earth is often used to view our earth
from top to bottom and that in the future more progress will be needed
to explore suitable methods for viewing the world from bottom to top
(Goodchild, 2012b). Compared with Digital Earth, VGEs are built for
the expression and analysis of geographic scenarios and phenomena
from specific perspectives. VGEs can also be used to assist researchers
in validating geographic processes in different regions, further helping
to macroscopically summarize and deduce geographic laws. Thus,
VGEs can be regarded as geographic analysis tools featuring the
bottom-to-top view. In addition, the geographic environment is a ma-
ture conception that describes an environment with people, physical
factors, and their relationships (Churchill and Friedrich, 1968). VGEs
are the very geographic environments designed for convenient simula-
tion and exploration by employing virtual technologies and advanced
computer technologies, whereas the initial purpose of Digital Earth
was to build a planet embedded with vast quantities of geo-
referenced data for the sharing of geo-referenced information (Gore,
1998). Moreover, VGEs provide multi-channel interfaces to encourage
users to contribute personal experiences. Thus, social factors and
users' perceptions can be incorporated into geographic research more
easily.

Third, although VGEs also have similar functions to those of
GeoWeb, in many ways, VGEs are an extension beyond GeoWeb.
GeoWeb reportedly offers continuously available geo-information
(e.g., spatial data, functions and location-aware devices/sensors) and
geospatial capabilities accessed through a service-based interface
(ESRI, 2006) At present, the output formats for GeoWeb are web maps
using Mashup mode (Haklay et al., 2008; Batty et al., 2010) and
geo-browsers such as NASA World Wind, Google Earth, and Microsoft
Live Local 3D (Hogan, 2007). Those platforms are now focused on geo-
information sharing. VGEs are built with a focus on supporting complex
geographic research for the exploration of comprehensive geographic
laws (Lin et al., 2013) with which researchers from different fields are
encouraged to perform geo-collaborative research and the public is
allowed to participate. During the entire process, not only geo-
information but also multi-disciplinary geo-knowledge (e.g., geograph-
ic process models and human spatial cognition) can be shared. In this
mode, the process of geo-information sharing can be enhanced to
become a process of geo-knowledge sharing, and it is expected that
the ability of the latter may be greatly improved in the near future.

5. Future works and conclusion

Most commonly used geographic analysis tools have their own
development processes, during which their contents and functions are
improved according to practical needs. These development processes
also determine the degree of user recognition. This article provides a
short summary describing current VGEs after a ten-year development
process, including their evolutionary process, use cases, and distinct fea-
tures, to provide a clearer image and to enable better user understand-
ing of VGEs. There is no doubt that the information bandwidth from the
real world to the human brain is maximized, thus VGEs would provide
us with the opportunity to explore and understand the intriguing
world more efficiently.

Overall, ten years of research has shownmuch progress on VGEs, in-
cluding progress on both the theories and the applications. However,
limitations remain. Continued research is still required for the improve-
ment of current VGEs.

First, to effectively support VGEs use cases at different levels, related
theories and technologies that have been employed in each component
of VGEs should be exploredmore deeply. (1) to realize thefirst use case,
in the data component, the ability to integrate heterogeneous geo-
graphic data for constructing virtual environments must be enhanced,
and the efficiency of the datamodel used to represent high dimensional
geographic information is still expected to improve. At the same time,
the interactive component requires person-oriented multisensory and
inexpensive equipment. The usage of VGEs will be greatly enhanced
only when this equipment is widely used. (2) For the second use case,
to couple multidisciplinary and multi-scale models for comprehensive
simulations, the problems of semantics heterogeneity and scale adapt-
ability of models must be further addressed. (3) Collaborative modes
are essential for the third use case, but current collaborative modes
used in the collaborative component for building VGEs are still not
rich enough. Further studies, investigating the introduction of multime-
dia into VGEs, are worth exploring.

Secondly, more advanced technologies should be introduced to sup-
port the building of VGEs. For example, the recent and rapid develop-
ment of cloud computing has focused on creating Infrastructure as
Service (IaaS) and Platform as Service (PaaS), and users only need to
know how to use Software as Service (SaaS) in the application layer
(Ahrens, 2010; Armbrust, 2010). Thus, cloud computing can be used
in VGEs for the sharing and execution of analysis models (Yang et al.,
2010, 2011) so that multidisciplinary experts can focus on analysis
tasks rather than the integration and deployment of models in the
computing environment (Wen et al., 2012). As another example, sensor
network and the Internet of things have shown their potential abilities
for geographic serving in the big data times, and thus can be introduced
into VGEs for data collection and processing.

Lastly, the use cases have demonstrated the abilities of VGEs at
different levels and the current state of VGEs can thus be evaluated.
However, to date, VGEs equipped with all of these functions are still
rare, which means that in the coming years, researchers must pay
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more attention to the development of the VGE as an integrated tool.
Once all three levels of functions are supported in a VGE as a whole,
the VGE can be regarded as an updated and overall vision for geographic
research.
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